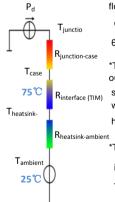


The thermal data table

SimpoLED-81 thermal data


Pd = Pe x (1-ηL)		Heat sink to ambient temperature rise Ths-amb (°C)	Heat sink to ambient temperature rise Ths-amb (°C)
		SimpoLED-8150	SimpoLED-8180
Dissipated Power Pd(W)	6	15.6	10
	12	26.2	15
	18	36	30.5
	24	46.8	37.2
	30	51.8	46.2
	35		54.3

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe x (1-\eta L)$.
 - Pd Dissipated power; Pe Electrical power; ηL = Light effciency of the LED module;
- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).

 ${\bf Ming Fa\ recommends\ the\ use\ of\ a\ high\ thermal\ conductive\ interface\ between\ the\ LED\ module\ and\ the\ LED\ cooler.}$

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow.

Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

- θ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer

shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface (TIM)}}$ [°C/W], the thermal resistance with the

heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package R_{interface (TIM)} and R_{heatsink-ambient} can be integrated

into the thermal resistance $R_{\text{case-ambient}}$ at this point.Thus, the following formula is also used:

 $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$